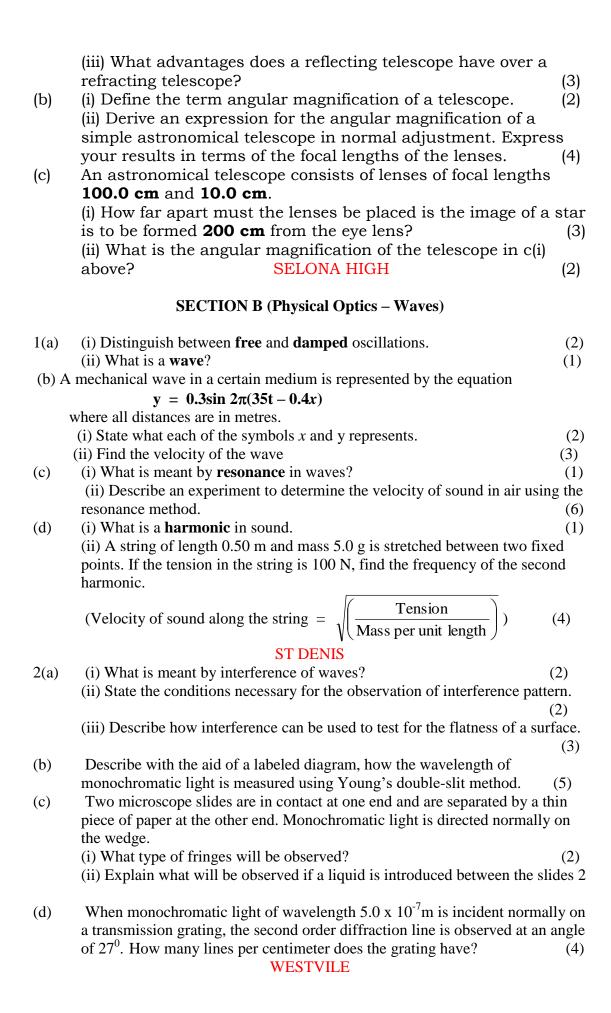

${\bf SECTION}~{\bf A}~({\bf Geometrical~Optics~-Light})$

1(a)	For a converging mirror define the terms	
	(i) radius of curvature	(1)
(1.)	(ii) principal focus	(1)
(b)	With the aid of a ray diagram derive the mirror formula for a convex mi	rror. (6)
(c)	(i) With the aid of a ray diagram, describe the structure and action of a	(0)
(0)	reflecting telescope in normal adjustment.	(5)
	(ii) State two advantages of a reflecting telescope over a refracting one.	(2)
(d)	An astronomical telescope with an objective of focal length 84.0 cm and	
	eyepiece of focal length 8.0 cm. The eyepiece is shifted until the final im	_
	formed at a distance of 64.0 cm from the objective. Find the distance bet	
2(a)	the two lenses. (i) Explain the difference between the terms magnifying power and	(5)
2(a)	magnification as applied to optical instruments.	(3)
	(ii) State what is meant by normal adjustment in the case of an astronom	` '
	telescope.	(1)
	(iii) With the aid of a ray diagram, explain how the two lenses of a telesc	cope
	form, at infinity, a magnified virtual image of a real distant object.	(4)
(b)	A telescope has an objective of focal length 80cm and an eyepiece of fo	
	length 2.0cm. It is focused on the moon, whose diameter subtends an an	
	8.0 x 10 ⁻³ rad at the objective. The eyepiece is adjusted so as to project a sharp image of the moon onto a screen placed 20cm from the eyepiece le	
	Calculate:	115.
	(i) the diameter of the intermediate image formed by the objective lens.	(3)
	(ii) the diameter of the image on the screen.	(3)
	(iii) the separation of the lenses.	(2)
(c)	Explain, with the aid of a diagram, the formation of the eye-ring in a tele	-
2(a)	and state why it is the best position for the eye of the observer. (4) Bo (i) What is meant by <i>refraction of light</i> ?	(1)
3(a)		` ′
	(ii) Explain why a pond of clear water appears shallower, than it actually	
	an observer.	(3)
	(iii) Describe an experiment to determine the refractive index of a liquid	
	`	5)
(b)	A lens forms a sharp image of height h_1 on a fixed screen. As the lens is	
	moved towards the screen another sharp image of height h_2 , of the same	
object,	is formed on the screen. If the object position remained the same in both	(4)
()	cases, obtain an expression for the height of the object.	(4)
(c)	A converging lens of focal length 30 cm is placed between an object and	a a
	diverging lens of focal length 5 cm. If the object is 6 metres from the	
	converging lens and 6.20 metres from the diverging lens, determine	(4)
	(i) the position and nature of the image formed.	(4)
((2)
	KAWANDA SS	
47.5		/2 `
4(a)	(i) State the conditions for total internal reflection.	(2)

	an application of total internal reflection.	(2)
(b)	Explain how a fish in a pond is able to enjoy a 180° field of view.	(3)
(c)	Show that when a ray of light passes through different media separate	ed by
	plane boundaries	
	$n \sin i = \text{constant}$	
	where n is the absolute refractive index of a medium and i is the angle	made
	by the ray with the normal in the medium.	(4)
(d)	Describe an experiment to measure the refractive index of glass of rec	tangular
	shape, using a pin, by the apparent depth method.	(4)
(e)	The figure below shows a liquid of refractive index 1.33 enclosed by g	
	uniform thickness. A ray of light, incident on face PQ at an angle of in	icidence,
	θ , emerges through face QR.	
	θ A	
	<u>/_=======</u> \	
	P R	
	A site and a Ois makes at an ideality the amount new discommens when	
	As the angle θ is reduced, suddenly the emergent ray disappears when $\theta = 16^{\circ}$. Find the angle A. (5) BULOOBA	
5 (a) '	What is meant by the following as applied to refraction thro	
J (a)	prism?	ougii a
	(i) Refracting angle.	(1)
	(ii) Deviation.	(1) (1)
(h)	(i) Briefly describe the adjustments that have to be made by	` '
(D)	using the prism spectrometer.	(3)
(ii) Describe an experiment to determine the refractive index	
(11	glass in form of a prism of known refracting angle, using	
	prism spectrometer.	(6)
(c)	A ray of light is incident at a small angle of incidence on a	
(0)		PIIOIII
	of small angle. A lifthe refractive index of the brism mate	_
	of small angle, A. If the refractive index of the prism mate	rial is
(d)	n, derive an expression for the deviation produced.	rial is (4)
(d)	n, derive an expression for the deviation produced. A ray of light is incident on a prism of refractive index 1.5	rial is (4) and
(d)	n, derive an expression for the deviation produced. A ray of light is incident on a prism of refractive index 1.5 refracting angle 60°. The ray emerges from the prism at a	rial is (4) and
(d)	n, derive an expression for the deviation produced. A ray of light is incident on a prism of refractive index 1.5 refracting angle 60° . The ray emerges from the prism at a angle of 65° . Find;	rial is (4) and n
(d)	n, derive an expression for the deviation produced. A ray of light is incident on a prism of refractive index 1.5 refracting angle 60°. The ray emerges from the prism at a angle of 65°. Find; (i) the angle of incidence	rial is (4) and n (3)
(d)	 n, derive an expression for the deviation produced. A ray of light is incident on a prism of refractive index 1.5 refracting angle 60°. The ray emerges from the prism at a angle of 65°. Find; (i) the angle of incidence (ii) the deviation of the ray 	rial is (4) and n
	n, derive an expression for the deviation produced. A ray of light is incident on a prism of refractive index 1.5 refracting angle 60°. The ray emerges from the prism at a angle of 65°. Find; (i) the angle of incidence (ii) the deviation of the ray KISUBI MAPEERA	rial is (4) and n (3)
	n, derive an expression for the deviation produced. A ray of light is incident on a prism of refractive index 1.5 refracting angle 60°. The ray emerges from the prism at a angle of 65°. Find; (i) the angle of incidence (ii) the deviation of the ray KISUBI MAPEERA For a converging lens, what is meant by	rial is (4) and n (3) (2)
6. (a)	n, derive an expression for the deviation produced. A ray of light is incident on a prism of refractive index 1.5 refracting angle 60°. The ray emerges from the prism at a angle of 65°. Find; (i) the angle of incidence (ii) the deviation of the ray KISUBI MAPEERA For a converging lens, what is meant by (i) principal focus.	rial is (4) and n (3) (2)
6. (a)	n, derive an expression for the deviation produced. A ray of light is incident on a prism of refractive index 1.5 refracting angle 60°. The ray emerges from the prism at a angle of 65°. Find; (i) the angle of incidence (ii) the deviation of the ray KISUBI MAPEERA For a converging lens, what is meant by	rial is (4) and n (3) (2)

(ii) Draw a labeled diagram of a named device to show (without description)

- (b) A convex lens of focal length, f, forms an image on a screen of an object which is at a distance, y, from the screen. Derive an expression for the distance, y, for the image to always be real.(4)
- (c) Describe an experiment to determine the focal length of a diverging lens with the help of a converging mirror. (5)
- (d) A combination consists of two thin lenses, one convex and the other concave, each of focal length **20 cm** and placed co-axially with their centers **20 cm** apart. An object is placed on the common axis at a distance of **30 cm** from the convex lens on the side remote from the concave lens.
 - (i) Sketch a ray diagram to illustrate the path of the rays through the combination. (2)
 - (ii) Find the nature and position of the final image formed. (5)
 - (iii) What is the magnification produced by the combination? (2) KCB
- 7(a) Explain with the aid of suitable diagrams, the terms principal focus and conjugate points as applied to a converging lens. (3)
- (b) Three thin lenses L_1 , L_2 and L_3 are arranged co-axially as shown in **figure 1** below.



The focal lengths of the lenses are **20.0 cm**, **15.0 cm** and **5.0 cm** respectively. An object, O, is placed at a distance of **30 cm** from L₁. Find the position, size and nature of the final image formed by the system of lenses. (8)

- (c) (i) Define the term angular dispersion of a ray of light. (1) (ii) Calculate the angular separation of the red and violet rays which emerge from a **60°** glass prism when a ray of white light is incident on the prism at angle of **45°**. The material of the glass prism has a refractive index of **1.64** for the red light and **1.66** for the violet light. (4)
- (d) Show that when a ray of light passes nearly normally through a prism of small angle, α , and refractive index, \mathbf{n} , the deviation, \mathbf{d} is given by $\mathbf{d} = (\mathbf{n} \mathbf{1}) \alpha$. (4)

KANSANGA SEED

8(a) (i) Describe briefly some form of a reflecting telescope, explaining the function of each part. (5)
(ii) Draw a ray diagram to show the formation of the image of an object point on the axis of the telescope described in a(i)abov (1)

3(a) What is meant by (i) wavelength of a wave. (1) (ii) *pitch* of a musical note (1) (i) A source of sound of frequency f, is moving with velocity u_s away from an (b) observer who is moving with velocity u_0 in the same direction. If the velocity of sound is V, derive an expression for the frequency of sound heard by the observer. (5) (ii) Explain what happens to the pitch of the sound heard by the observer in (b)(i) above when the observer moves faster than the source (2) (i) A star which emits light of wavelength λ is approaching the earth with (c) velocity v. If the velocity of light is c, write down an expression for the shift in the wavelength of the emitted light. (1) (ii) Describe how the speed of a star may be measured using the Doppler effect. (4) (d) Two open pipes of lengths 78 cm and 80 cm are found to give a beat frequency of 5 Hz when each is sounding in its fundamental note. If the end errors are 1.7 cm and 1.5 cm respectively, calculate the; (i) velocity of sound in air (4) (ii) frequency of each note. (2) **SPENSA** 4(a) (i) What evidence does suggest that light is a transverse wave while sound is a longitudinal one? (ii) What is meant by *division of wave fronts* as applied to interference of waves? (2) (b) Two slits X and Y are separated by a distance s and illuminated with light of wavelength, λ . Derive the expression for the separation between successive fringes on a screen placed a distance D from the slit. (5) A source of light, a slit, S, and a double slit (A and B) are arranged as shown (c) below (i) Describe what is observed on the screen through the microscope when a white source of light is used. (2) (3) (ii) Explain what is observed when slit S is gradually widened. (iii) How would you use the set up above to measure the wavelength of red light? In Young's double-slit experiment, the 8th bright fringe is formed 6mm away (d) the centre of the fringe system when the wavelength of light used is 6.3

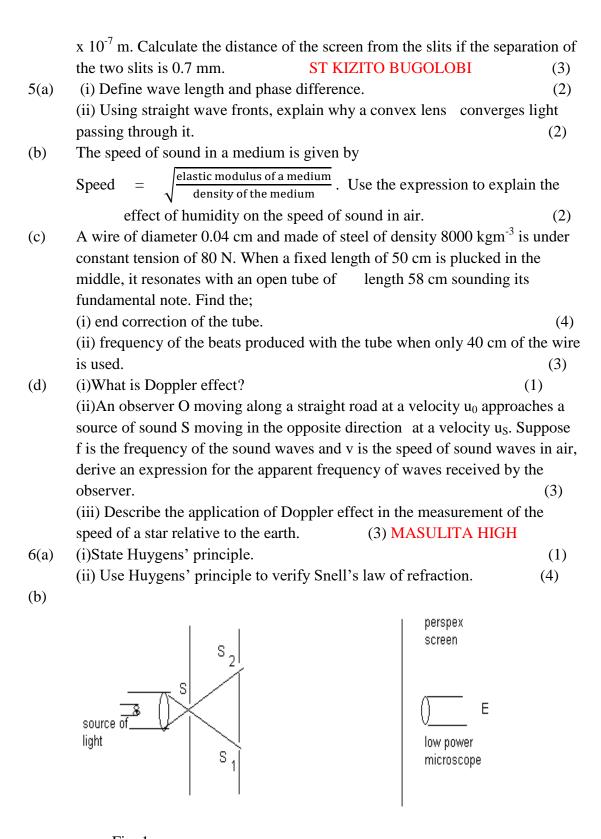
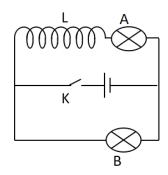



Fig. 1

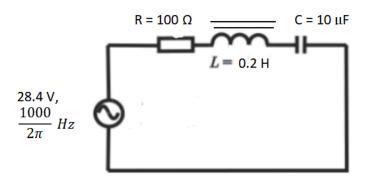
The set up in figure 1 is used to produce interference patterns on a Perspex screen. Describe how you would use the above set up to compare the wave lengths of green and red lights. (4) Explain what would be observed when the double slits S_1 and S_2 are moved farther away from the primary slit S_1 . (2)

(c) Two optically thin, flat glass slides are separated at one end by a wire of diameter 0.20 mm. At the other end, the slides touch each other, giving the air between them a thickness ranging from 0 to 0.20 mm. The plates are 15.0 cm long and are illuminated from above by light of wave length 6.0×10^{-7} m. (i) Use suitable well defined symbols to derive an expression for the fringe separation observed in the air – wedge. (4) (ii) Determine the number of bright fringes seen in the reflected light. (iii) What is the effect of increasing the thickness of the sheet separating the glass slides and using light of longer wave length, on fringe separation. (2) **KCB SECTION C (A.C circuits)** 1(a) Define the following terms as applied to voltage in alternating current circuits. (1) (i) Root-mean-square value. (ii) Peak value. (1) (b) Derive the relationship between the root mean square value and the peak value of the alternating current. (4) With the aid of a labeled diagram, describe the mode of operation of a (c) repulsion type moving iron ammeter. (5) A source of alternating current voltage of *frequency f* is connected across the (d) ends of a pure inductor of self-inductance L. Derive an expression for the inductive reactance of the circuit and explain the phase difference between the voltage and the current that flows. (5) (e) A pure inductor of inductance 2H, is connected in series with a resistor of 500 Ω across a source of e.m.f 240 $V_{(r.m.s)},$ alternating at a frequency of 50 Hz. Calculate the potential difference across the resistor. (i) Give two advantages of alternating current over direct current in power 2 (a) transmission. (ii) Explain the fact that an alternating current continues to pass through a capacitor whereas direct current cannot. (4) A sinusoidal voltage, $V = V_0 \sin 2\pi ft$, is connected across a capacitor of (b) capacitance, C. Derive an expression for the reactance of the capacitor. (4) (c) With the aid of a labelled diagram describe the structure and action of a hotwire ammeter. (6) Power of 60 kW produced at 120 V is to be transmitted over a distance of 2 (d) km through cables of resistance $0.2 \Omega \text{ m}^{-1}$. Determine the voltage at the output of an ideal transformer needed to transmit the power so that only 6% of it is (4) 3(a) Distinguish between reactance and resistance. (2) An alternating voltage $V = V_0 \sin 2 \pi f t$ is applied to a pure inductor of self-(b) inductance, L. Derive an expression for the reactance of the inductor in terms of f and L. (4) (c) Two identical bulbs **A and B** are connected to a coil, **L**, of negligible

resistance as shown in the diagram in **figure 3**.

Explain the observations when the switch;

(ii) K is opened. (2)


(iii) Soft iron rod is inserted in the coil and K closed. (2)

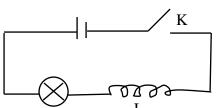
(d) A capacitance of 12.5 μ F and resistance 10 Ω in series with a 20 Ω resistor is connected to an alternating voltage, $V = (20\sqrt{2}) \cos 2000 t$, volts. Find:

(i) the power dissipated in the circuit. (4)

- (ii) the potential difference across the capacitor. (2)
- (iii) the phase angle between the current and the applied voltage. (2)
- 4(a) (i) Define the terms impedance and root-mean-square value of an alternating current. (2)
 - (ii) With the aid of a well labeled diagram, describe the mode of operation of a repulsion type of moving -iron meter. (5)
- (b) A coil of self-inductance, \mathbf{L} and negligible resistance is connected across a source of alternating voltage $\mathbf{V} = \mathbf{V}_o \cos \omega t$. (i) Find the expression for the current which flows in the coil. (3)
 - (ii) Sketch, using the same axes, the time variation of the applied voltage and the current which flows in the coil. (1)
 - (iii) Sketch the vector diagram of the inductor above. (1)

(c)

A series R-L-C circuit is set up as shown in above. Calculate for the circuit;


- (i) The root-mean-square current. (4)
- (ii) Resonant frequency and state its application. (3)
- (iii) Power dissipated in the circuit. (1)

- (a) (i) Distinguish between resistance and reactance.
 - (ii) Draw a circuit of a full-wave rectifier being used to drive current through a resistor and explain its mode of action.
- (b) (i) Define the term magnetic flux.
 - (ii) A wheel with metal spokes is turning through a steady 2 revolutions per second and it has a radius of 50cm. Its plane is perpendicular to the horizontal component of the earth's magnetic field which is $1.6 \times 10^5 T$. Calculate induced emf in a spoke.
- (c) (i) Define frequency of a.c.
 - (ii) A sinusoidal voltage has a peak valve of 30V at a time of one- tenth of a cycle after a peak has been reached. What current will be present at this instant if the total resistance of the circuit is 9.0Ω ?
- (d) A coil of self-inductance L and negligible resistance is connected across a source of alternating voltage $V = V_0 coswt$
 - (i) Find the expression for the current which flows in the coil.
 - (ii) Explain why current and voltage are out of phase.

Q6

- (a) State the laws of electromagnetic induction.
- (b) (i) Define mutual inductance.
 - (ii) Describe an experiment to demonstrate mutual induction.
- (c) (i) Define the terms resonant frequency and impedance.

(ii)

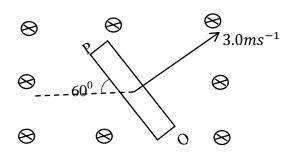
A bulb P and an inductor L are connected across a voltage source as shown. Explain what is observed when the switch K is closed and then opened after some time.

(d) A circuit coil of 12 turns carrying a current of 0.8A is placed with its plane in the magnetic meridian. A small magnetic needle placed at the centre of the coil makes 30 oscillations per minute about the vertical axis. When the current is cut off, it makes 20 oscillations per minute. If the horizontal component of the earth's magnetic flux density is $2.5 \times 10^{-5}T$, calculate radius of the coil.

(Assume the square of frequency of oscillations is proportional to magnetic flux density)

(e) With the aid of a diagram, describe the working of an ampere balance.

O7


- (a) (i) Define a tesla.
 - (ii) With the aid of a diagram, explain the term hall voltage.
- (b) (i) Define a Weber.

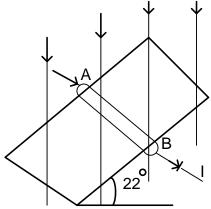
- (ii) A copper wire of length 7.8s is mound into a circuit coil of radius 6cm. A current of 2.5A is passed through the coil.
 - Calculate the magnetic flux density at the centre of the coil.
- (c) (i) Explain the factors which affect the efficiency of a transformer.
 - (ii) Explain the effect of a fall in supply frequency of current in the primary coil on voltage across the secondary coil of a transformer.
- (d) Power of 5000W produced at 90V is to be transmitted over a distance of 3km through cables of resistance 0. $4\Omega m^{-1}$.
 - Find the voltage at the output of a transformer needed to transmit the power so that only 8% of it is lost. (Assume the transformer is 100% efficient).

Q8

- (a) (i) State Lenz's law.
 - (ii) Describe an experiment to demonstrate Lenz's law.

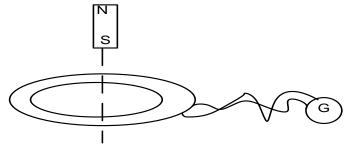
(iii)

The diagram above shows a metal rod PQ, of length 8.0cm being moved in the plane of the paper at 3.0ms⁻¹ through a magnetic field of flux density $4.0 \times 10^{-2}T$ which is directed into the paper. Find the magnitude of the induced emf in the rod.

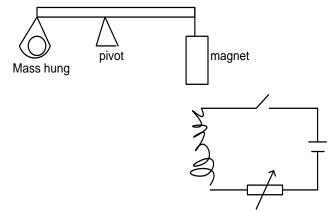

- (b) (i) Define a magnetic field line.
 - (ii) Two long parallel wires, 5cm apart are carrying currents of 2A and 4A in opposite directions, in a vacuum.

Find the resultant magnetic flux density at a point midway between the wires.

- (c) (i) A rectangular coil of 110 turns is suspended in a uniform magnetic field with the plane of the coil parallel to the field. If a current of $60\mu A$ through the coil causes a deflection of 30°, calculate the magnetic flux density if the torsional constant of the suspension is $2.5 \times 10^{-8} Nm$ per degree.
 - (ii) Explain the necessary modification made on the ballistic galvanometer to convert it into a moving coil galvanometer.

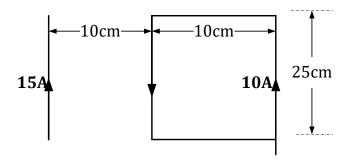

Q9

- (a) Define an ampere.
- (b) Explain how the definition in (a) above is used in the measurement of
- (c)(i) Explain why a current carrying conductor placed in a magnetic field experiences a force.
- (ii) A Metal rod AB of mass 40g and 20cm long is placed parallel to a frictionless plane inclined at an angle of 20⁰ to the horizontal, the rod carries a current in the direction AB as shown



If the plane lies in uniform magnetic field of flux density 0.25T, calculate the current in the rod such that it remains stationary.

- (d)(i). with the aid of a well labelled diagram, describe the structure and mode of operation of a moving coil galvanometer.
- (ii), explain the structural modifications to convert a moving coil galvanometer to ballistic galvanometer.
 O10
- (a) (i). Explain what is meant by Hall Effect and give any two instances where it's applied.
- (ii). A circular coil of 20 turns each of radius 10cm and lies on a flat table. The earth's magnetic field intensity at the location of the coil is 43.8Am⁻¹ while the angle of dip is 67⁰, find the magnetic flux threading the coil.
- (b) Describe an experiment to determine the angle of dip using an earth inductor
- (c) A circular coil of many turns is fixed with its plane horizontal as shown below.

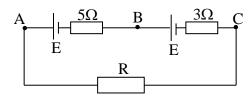


The ends of the coil are connected to a center zero galvanometer G. a magnet is released from rest so that it falls vertically through the coil. Sketch a graph of deflection of the galvanometer against time of fall of the magnet and explain the main characteristics of the graph

The fig above represents a current balance. When switch is open, the force required to balance the magnet is 0.2N. When the switch is closed and a current of 0.5A flows, a force of 0.22N is required for balance.

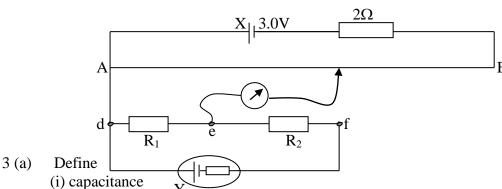
- i. Determine the polarity of the magnet closest to the coil.
- ii. Calculate the force required for balance when a current of 2A flows in the coil **O11**
 - (a) (i) Define the term magnetic flux and state its SI unit.
 - (ii) A coil of 10 turns and mean radius 5.0 cm lies with its plane on a flat horizontal table. The plane of the coil is threaded by a magnetic field of 0.85 T making an angle of 60° with the horizontal. Calculate the magnetic flux linking the coil.
 - (b) (i) Two parallel wires each of length, **L**, carry currents of the same Magnitude, **I**, in opposite directions in free space. The two wires are separated by a distance, **d**. Derive an expression for the magnetic force exerted on any one of the wires.
 - (ii) A rectangular loop of size 25cm by 10cm carries a current of 10A but with its longer side parallel to the straight wire 10cm apart carrying a current of 15A as shown below.

Calculate the resultant force on the loop

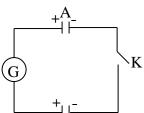

- (c) Describe an experiment to accurately measure resistance.
- (d) Give four industrial application of magnets.

SECTION D : Electricity (Electrostatics, Capacitors, Circuit theory, Potentiometers, Wheatstone bridge and the metre bridge)

- 1(a) For a source of electricity, what is meant by
 - (i) electromotive force
 - (ii) internal resistance?
- (b) (i) State the factors which determine the resistance of a wire of a given material.
 - (ii) Explain why the resistance of a metal increases when the temperature of the metal is increased.
 - (iii) Derive an expression for the equivalent resistance of three resistances, R_1 , R_2 and R_3 connected in series.
- (c) You are provided with about 1 m of a bare constantan wire, an ammeter, a voltmeter, crocodile clips and some connecting wires.

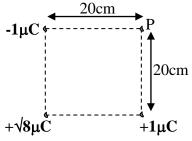

Describe an experiment you would perform, using all but only the items provided, to determine the internal resistance of a cell. Give a diagram of your setup.

(d) In the circuit shown below, each source has en emf of 2V and negligible internal resistance.



When a voltmeter is connected between A and B, it reads 0 V. Find

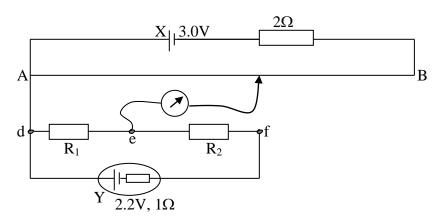
- (i) the value of the resistance R.
- (ii) the reading of the voltmeter when connected between B and C.
- 2(a) Explain why the terminal p.d falls as the current drawn from a source increases.
- (b) A d.c source of emf 12 V and negligible internal resistance is connected in series with two resistors of 400 Ω and R ohms, respectively. When a voltmeter is connected across the 400 Ω resistor, it reads 4 V while it reads 6 V when connected across the resistor of R ohms. Find the:
 - (i) resistance of the voltmeter
 - (ii) value of R
- (c) Describe how you would use a slide wire potentiometer to measure the internal resistance of a dry cell.
- (d) In the circuit diagram shown below, AB is a slide wire of length 1.0 m and resistance 10Ω . X is a driver cell of emf 3.0 V and negligible internal resistance. Y is a cell of emf 2.2 V and internal resistance 1.0Ω When the centre-zero galvanometer is connected in turns to points $\bf e$ and $\bf f$, the balance lengths obtained are 45.0 cm and 80.0 cm respectively. Calculate the:
 - (i) current flowing through R₁.
 - (ii) resistances of R_1 and R_2 .



- (ii) dielectric strength 2.2V, 1Ω
- (b) Explain the action of a dielectric in a capacitor.
- (c) Describe an experiment to show that capacitance is affected by the thickness of the dielectric.
- (d) Derive an expression for the energy stored in a capacitor of capacitance C charge to a p.d V.
- (e) In the circuit shown below switch K is open, capacitors A and B have respective capacitances of $10\mu F$ and $15~\mu F$ and are charged to p.ds of 25~V and 20~V respectively.

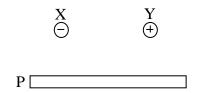
A ballistic galvanometer G, with sensitivity of 2 divisions per μ C joins the positive plates of the capacitors. If K is now closed, what will be the throw on G?

- 4(a) (i) State Coulomb's law of electrostatics.
 - (ii) Define the terms *electric field intensity* and *electric potential at a point*.
- (b) (i) Sketch graphs of the variation of electric potential and electric field intensity with distance from the centre of a charged conducting sphere.
- (ii) Describe how a conducting body may be positively charged but remains at zero potential.
- (iii) Explain how the presence of a neutral conductor near a charged conducting sphere may reduce the potential of the sphere.
- (d) Charges of -1μ C, $+\sqrt{8\mu}$ C and $+1\mu$ C are placed at the corners of a square of side 20 cm as shown below;

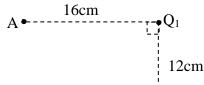

Calculate the:

- (i) electric potential at P
- (ii) electric field intensity at P
- 5(a) Define the terms
 - (i) Dielectric constant
 - (ii) Equipotential
- (b) (i) State the characteristics of an equipotential.
 - (ii) Explain the occurrence of corona discharge
- (c) Describe, with the aid of a diagram, how a high voltage can be generated using a Van der Graaf generator.
- (d) An air capacitor of capacitance $600 \mu F$ is charged to 150 V and then connected across an uncharged capacitor of capacitance $900 \mu F$.
 - (i) Find the energy stored in the 900 μF capacitor
- (ii) With the two capacitors still connected, a dielectric of dielectric constant 1.5 is inserted between the plates of the 600 μF capacitor. Find the new p.d. across the two capacitors.
- 6(a) A battery of emf E volts and internal resistance 5 Ω is connected in series with aresistor of variable resistance R.

Find the condition for the maximum power dissipated in the variable resistance.

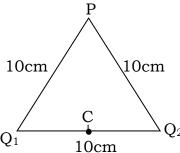

(b) A d.c source of emf 22 V and negligible internal resistance is connected in series with two resistors of 500 and R ohms, respectively. When a voltmeter is connected across the 500 Ω resistor, it reads 10 V while it reads 8 V when connected across the resistor of R ohms. Find the:

- (i) resistance of the voltmeter
- (ii) value of R
- (c) Describe how you would use a slide wire potentiometer to measure the internal resistance of a dry cell.
- (d) In the circuit diagram shown below, AB is a slide wire of length 1.0 m and resistance 10Ω . X is a driver cell of emf 3.0 V and negligible internal resistance. Y is a cell of emf 2.2 V and internal resistance 1.0Ω

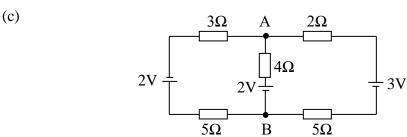

When the centre-zero galvanometer is connected in turns to points \mathbf{e} and \mathbf{f} , the balance lengths obtained are 45.0 cm and 80.0 cm respectively. Calculate the:

- (i) current flowing through R₁.
- (ii) resistances of R_1 and R_2 .
- 7 (a) (i) Explain why a neutral conductor may be attracted to a charged body.
- (ii) X and Y are small neighbouring balls charged as shown in the figure below and brought near a positively charged plate P.

Sketch the electric field pattern in the region of the three bodies and indicate the neutral point(s).

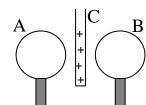

- (b) Describe an experiment to investigate the charge distribution over the surface of a charged conductor.
- (c) Derive an expression for the electric potential at a point which is a distance r from an isolated point charge Q in a medium of permittivity ε .
- (d) In the figure A is a point 16 cm from a point charge Q_1 .

Another point charge Q_2 is located 12 cm from Q_1 as shown. If $Q_1 = 4 \mu C$ and $Q_2 = 6 \mu C$, find the work done in moving a charge of $Q_2\mu C$ from point A to a point midway between A and Q_2 .

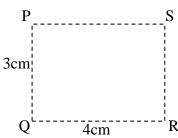

8(a) (i) Explain why a charged body attracts a neutral conductor.

- (ii) Explain the occurrence of corona discharge.
- (b) Describe an experiment to investigate the charge distribution over a conductor, showing how the conclusion is arrived at.
- (c) (i) Derive an expression for the electric potential at a point a distance d from a point charge Q in a medium of permittivity ε .
- (ii) The diagram below shows two point charges Q_1 and Q_2 of $+6\mu C$ and $+4\mu C$ respectively

Find the work done in moving a charge of $-4 \mu C$ from point P to point C midway between Q_1 and Q_2 and interpret the answer you have obtained.


- 9 (a) (i) What is meant by *potential difference*?
 - (ii) Define a volt.
- (b) Explain why the terminal p.d across a source decreases as a bigger current is drawn from the source.

In the circuit shown above, find


- (i) the current flowing in the 4-ohm resistor.
- (ii) the p.d between points A and B.
- (d) Describe an experiment to measure the internal resistance of a cell.
- (e) When a battery of emf 2 V is connected in series with a cell C, the combination gives a balance length of 80.0 cm. When cell C is reversed, the balance length falls to 16.0 cm. What is the emf of cell C?
- 10(a) (i) What is meant by the dielectric constant?
 - (ii) Derive an expression for the energy stored in a capacitor, of capacitance C, charged to a voltage V.
- (b) Explain the action of a dielectric.
- (c) Describe how the unknown capacitance of a capacitor can be determined using a ballistic galvanometer.
- (d)A capacitor of capacitance 5 μ F is charged to a p.d. of 52 V with the aid of a battery. The battery is then removed and the capacitor is connected to an uncharged capacitor of capacitance 8μ F. Calculate:
 - (i) the final p.d., V across the combination.
 - (ii) the energy stored before and after connecting the two capacitors.
 - (iii) Account for the difference in the quantities of energy calculated.
- 11(a) (i) State Ohm's law
 - (ii) Describe an experiment to verify Ohm's law.

- (b) An accumulator of emf 3V and negligible internal resistance is joined in series with a resistance of 500 Ω and another resistance of 300 Ω . The voltmeter reads $\frac{5}{3}$ V when connected across the 500 Ω resistor. Calculate;
 - (i) the resistance of the voltmeter.
 - (ii) the reading of the voltmeter when connected across the 300 Ω resistor.
- (c) Define
 - (i) electrical resistivity
 - (ii) temperature coefficient of resistance
- (d) An electric element consists of 4.64 m of nichrome wire of diameter 0.5 mm, the resistivity of nichrome at 15°C being 1.12 x 10⁻⁶ Ωm. When connected to a 240V supply, the fire dissipates 2.0 kW and the temperature of the element is 1015°C. Determine the mean temperature coefficient of resistance of nichrome between 15°C and 1015°C.
- 12(a) Explain how objects get charged by rubbing.
- (b) The diagram shows two metallic spheres A and B placed apart and each supported on an insulating stand. A positively charged plate C is placed midway between them but without touching them.

B is momentarily earthed in the presence of C. Finally C is withdrawn.

- (i) Draw the spheres at the end of the operation and show the charge distribution over them.
- (ii) On the same diagram sketch the electric field pattern in the region of the spheres.
- (iii) Explain the change in p.d between the spheres as the spheres are moved further apart.
- (c)Describe an experiment to show that excess charge resides outside a hollow conductor.
- (d) Charges of -3μ C, $+4\mu$ C and $+3\mu$ C are placed at the corners P, Q and R of a rectangular frame PQRS in which PQ = 3 cm and QR = 4 cm as shown in the figure below

If the charges are in vacuum, calculate the magnitude of the electric intensity at S due to the charges.

- 13(a) Define
 - (i) capacitance
 - (ii) dielectric strength
- (b) Describe an experiment to show the relationship between capacitor charge and potential difference.

- (c) Derive an expression for the equivalent capacitance of three capacitors connected in series.
- (d)Two large metal plates, placed parallel to each other and separated by dry air, form a capacitor. The arrangement is given a charge, then isolated and finally an ideal voltmeter is connected across its plates as shown.

Explain what is observed on the voltmeter reading when

- (i) an insulating material is inserted in between the plates.
- (ii) the separation of the plates is increased.
- (e) When two capacitors, C_1 and C_2 are connected in series and the combination connected to a supply V the charge stored by C_1 is $8\mu C$ while the p.d. across C_1 is 4V.

When the capacitors are connected in parallel to the same supply the total charge stored by the combination is 36μ C. Given that $C_1 < C_2$, find;

- (i) the capacitances of the capacitors
- (ii) the p.d, V, of the supply